
1

Adatmenedzsment

Microservices Architecture, Oracle Database, OCI

Fekete Zoltán

Copyright © 2019 Oracle and/or its affiliates.

Principal Solution Engineer

The following is intended to outline our general product direction. It is intended for information purposes
only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code,
or functionality, and should not be relied upon in making purchasing decisions. The development,
release, timing, and pricing of any features or functionality described for Oracle’s products may change
and remains at the sole discretion of Oracle Corporation.

Statements in this presentation relating to Oracle’s future plans, expectations, beliefs, intentions and
prospects are “forward-looking statements” and are subject to material risks and uncertainties. A detailed
discussion of these factors and other risks that affect our business is contained in Oracle’s Securities and
Exchange Commission (SEC) filings, including our most recent reports on Form 10-K and Form 10-Q
under the heading “Risk Factors.” These filings are available on the SEC’s website or on Oracle’s website
at http://www.oracle.com/investor. All information in this presentation is current as of September 2019
and Oracle undertakes no duty to update any statement in light of new information or future events.

Safe Harbor

Copyright © 2019 Oracle and/or its affiliates.

http://www.oracle.com/investor

Transforming Monoliths into Microservices

Copyright © 2019 Oracle and/or its affiliates.

I.T Cost and Complexity

• For decades, I.T. has been costly and slow moving
• This presentation will focus on Data Management

• Root cause is complexity caused by:
• Enterprise Product Complexity

• Systems Integration Complexity

• New technologies can finally eliminate the sources of I.T.
complexity

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.4

Komplexitás és költség

• IT költségek és sok idő
• A fő ok a komplexitás, sok tevékenység, menedzsment

• Új megközelítések eltüntetik a komplexitás okait

• Autonomous management, cloud, Machine Learning

• Konvergens megoldás a szükséges funkciókkal
a rendszerintegráció komplexitását eliminálja

Data Strategy

• Modern Applications require many different:
• Data Types - Relational, Document, Spatial, Graph, etc.

• Workloads - Transactions, analytics, ML, IoT, etc.

• Each data type and workload requires
different database algorithms

• Two possible Data Strategies:
• Use single-purpose “best-of-breed” database

for each data type and workload

• Use a converged database for all data types and workloads

6 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Why Microservices?

• Develop application as suite of loosely-coupled small services,
each running in its own context and
communicating with lightweight mechanisms

• Enables rapid, frequent and reliable delivery of complex applications

• Each microservice should be
• Highly maintainable and testable

• Loosely coupled

• Horizontally scalable

• Independently deployable with own database

• Organized around business capabilities

• Owned by a small team

7

“Polyglot persistence will occur over the enterprise as different applications use different data storage
technologies. It will also occur within a single application as different parts of an application’s data store

have different access characteristics.”

Martin Fowler & Pramod Sadalage, Feb. 2012
http://martinfowler.com/articles/nosql-intro-original.pdf

Source: The future is: NoSQL Databases Polyglot Persistence
http://martinfowler.com/articles/nosql-intro-original.pdf

Different apps/ µServices have different needs
User Sessions

Financial
Transactions

Shopping Cart
Recommend.

Engine
Product
Catalog

Reporting Analytics Activity Logs

P
ro

ce
ss

in
g

Heavy Writes √

Heavy Reads √ √ √ √

Fast Read/Write √

Data Consistency √

Data Durability √

Analytic √ √

Graph √

Spatial
Geo Distribution √ √ √

D
at

a

Relational √ √ √

Key/Value √ √ √

Document/JSON √ √

Graph √

Apache
Kafka

Web servers
Order service

API/Brokers
Mobile

IoT

Producers

Mobile App1

Consumers

Search Portal

Ops
Dashboards

Realtime
Analytics,

Alerts

ML Model
Training

Analytic
Reports

Adhoc
Exploration

Hadoop lake

Vertica/Hive

Event and data streams
Pub/Sub

AWS S3

Mobile Platform

ELK

Apache Flink

Transactions

11

Macro-Complexity

• Multiple technologies

• Multiple data stores

• Data copied multiple
times to do analytics

• Compromises security

• Compromises data
consistency

• Complex to maintain

• Need highly skilled
developers to build &
keep running

Real-World Example of Macro-Complexity

Oracle

NoSQL

MySQL

OLTP

Modern Information Systems
Data Types
Relational, Document, Event, Spatial, Graph
etc.

Application Types
Transactions, Analytics, Microservices, ML,
IoT, etc.

One Converged Database vs Several Specialized Databases

Architectural Strategies

AWS
Run separate Specialized Databases
for each data type

Oracle
Run one Converged Database
that supports multiple data types

Considerations for Converged
Converged approach:

• Benefits of consolidation and standardization

• Standardized administration

• Consistent data security policies

• Simple integration across multiple data formats

• Transactions and data consistency

Single-model Polyglot:

• Benefits of specialization

• Specialized APIs

• Specialized data formats

• Specialized access methods and indexes

The Hidden Pain of Data Management
and µServices

• µService philosophy encourages data store independence

• Choose the right data store for the characteristics of your service

• Data store separation comes with tradeoffs and complexities that multiply with
the granularity and interdependence of µServices

• Data Consistency: Important data elements across µServices should have
the same format, meaning, and ultimately values

• Data Sharing: Do you replicate or aggregate common data with µServices?
Are you building 2PC across µServices or creating an ETL headache?

• Data Security/Governance: Are you propagating sensitive data, or creating a
massive threat surface?

• Overall complexity: As each µService adds its own unique technology stack it
increases the operational overhead for the company overall.

Fragmentated Data Architecture Creates Complexity
Functional Isolation Leads to Complexity

15

• Each single-purpose database that is deployed
fragments the data architecture
• Different proprietary APIs, languages, and transaction

models
• Different operational needs and limitations
• Must continually transform data and propagate changes –

causing data delays and data divergence
• Must separately implement HA and Security policies in

every database to accommodate their differences

• End-to-end application security, availability, scalability,
consistency, etc. limited by the weakest of the databases

• Intent was “best-of-breed”, result is “worst-of-weakness”

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

16 Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Fragmented Features vs. Converged Product

• Phone calls, messaging, camera, calendar, etc.
used to require separate products
• Now converged into features of smartphones

• Similarly, key-value, analytics, JSON, sharding,
etc. originally required separate products
• Now converged into features of Converged

Database

• Simpler, better, and creates powerful synergies
across features

µService Data management Tradeoffs
Tradeoffs

Separate
DMPs

1 DMP
Single Schema

1 DMP
Multi Schema

1 DMP
PDB per Service

Dev

Dev Agility

Choice of data model/structure

Service Isolation

Data

Data Consistency

Data Sharing

Data Security

OPS

Common Security Model

Independent Service Scaling

Common Management and HA

DMP = Data Management Platform

Over Time New Functionality is Converged
Into Mainstream
• Single-purpose databases have emerged many times

• Abandoned after features are added to converged databases

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.18

1970s

Relational
DB

1980s

Object DBs

Converged
DB

XML DBs

Converged
DB

JSON DBs

Converged
DB

1990s 2000s 2010s 20??

Cobol
ISAM

Next DB

So
lu

ti
o

n
 C

o
m

p
le

xi
ty

Multitenant for Efficient, Agile Database Clouds

In-Memory for Database Acceleration

Sharding for Hyperscale and Geo Distribution

Native JSON for Document Data

In-Memory Ingest for Fastest IoT

Cloud SQL for integrating Object Store Data Lake

AutoML for simple integrated Machine Learning

Persistent Memory Store for Lowest Latency

Blockchain Tables for Preventing Fraud

Spatial and Graph for Mapping and Social Networks

Events for Transactional Event-driven Microservices

And many more …

Oracle Autonomous Database

Converged Features

Multi: tenant, language, model
In-Memory
Analytics

HyperscaleMultitenant

Machine
Learning

Blockchain

Cloud
Integration

{ }

JSON In-Memory
IoT

Spatial Graph

Persistent
Memory

Events

https://blogs.oracle.com/database/what-is-a-converged-database

https://blogs.oracle.com/database/what-is-a-converged-database

Polyglot Persistence Market Trends

• Single-model architectures are most pervasive for ‘edge’ applications
• New business & workload requirements

• Business applications naturally converge to multi-model architectures
• Today’s ‘edge’ applications are tomorrow’s mainstream business applications

• Efficiencies of multi-model architecture override advantages of special-
purpose systems over time

• There will always be single-model polyglot architectures
• Because there are always new ‘edge’ applications

• Oracle’s single-model architectures:

• Oracle Berkeley DB, Oracle NoSQL Database, Essbase, Oracle Big Data
Spatial and Graph

Web servers
Order service

API/Brokers
Mobile

IoT

Producers Consumers

Mobile App1

Search Portal

Ops
Dashboards

Realtime
Analytics,

Alerts

ML Model
Training

Analytic
Reports

Adhoc
Exploration

Converged database
+

Events
+

Managed

Transactions

21

• Microservices support
• Cool app building blocks & APIs
• Real-time, current data
– No need to copy data around

• Less to learn, manage, backup,
upgrade, secure, (7x fewer security

patches)
• Self-managing with

Autonomous Database
• No need for army of developers

to keep running
• Choice of deploying N databases

for business reasons
(2 is better than 9)

What Customers Have Asked For

Oracle Autonomous
Database

with Kafka, Spark,
Hadoop, and
Blockchain

Copyright © 2019 Oracle and/or its affiliates.

Konvergens, automatizált, beépített biztonság és gépi tanulás

Self-driving

Self-repairing

Self-securing

Kevesebb emberi
működtetés

Megvédi magát a
támadásoktól

Folyamatos
működés

Az első autonóm adatbázis

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Az Autonomous adatbázis fő ismérvei

Hagyjuk, hogy az adatbázis végezze el a munkát!

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Önvezető

Automatizálja az adatbázis- és
infrastruktúramenedzsment
feladatokat, monitorozást és a
hangolást
Scale out, fault tolerance, DR
Compatibility, Exadata

Önvédő

Megvéd a külső támadásoktól, és a
rosszhiszemű belső felhasználóktól
Aut. online biztonsági frissítés
Biztonságos konfiguráció
Titkosítás

Önjavító

Megakadályoz minden típusú
leállást
A tervezett karbantartásokat is
online végzi el
Elasztikus skálázás
99,95% és 99,995% uptime
(karbantartás is benne)

Emberi erőforrások
megtakarítása

Emberi hibák kiszűrése és
megelőzése

Emberi beavatkozás nélkül

Minden automatizált

• Provisioning

• Clustering

• Disaster Protection

• Tuning

• Scale-Up and Scale-Out

• Security

• Patching

• Backup – 60 nap ingyenesen
az előfizetési díjban

Autonomous Database

Machine Learning
Driven Operations• Exadata

• RAC

• Data Guard

• Database Vault

• Multitenant

• Parallel SQL

• Flashback

• Etc.

Egyszerű

• Oracle mindent automatizál és menedzsel

– létrehozás, életciklus, software update-ek, stb.

• Ügyfél választása: DB OCPU, storage TB, region

Elasztikus

• minimum - 1 OCPU: Serverless, amikor nem fut

• Automatikus skálázás online, futás közben:
True Pay-per-Use: másodperc alapú

• alacsony minimum time commitment – 1 perc

Shared serverless infrastructure

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Pros

• Freedom in models for each µServices

• Limited Development dependency

• µServices isolation

• Model consistency and shared reference data
possible with Application containers

• Scaling independence for PDBs

• OPS consolidation with some resource control

Cons

• Limited freedom in technology choices

1 Container DB, and a Pluggable DB for each µService
Common Data Management Platform

Separate PDBs for each µServices
Common Reference Data

Product

catalog

API

Financial

data

API

Recommend

engine

API

JSON

Converged Database Architecture

Airline Hotel
Events

Booking

Oracle Container Database (CDB).
Each PDB can optionally be sharded
for fault isolation and geo-distribution
across multiple CDBs.

Oracle Pluggable Databases (PDBs)
Each PDB used as data store for a
microservice.
Each PDB can scale via SMP, Real
Application Clusters, or Sharding

Kubernetes for container
orchestration

Docker containers running
microservicesKafka or

JMS
Microservices communicate via
messaging

JSON

Transparent access through
JSON/REST and JDBC

Multimodel Polyglot Persistence within
the same database:

Enterprise Management and Operations
Business Continuity

Disaster Recovery

On-Line Backup

Enterprise Level Security

Multi Tenant Databases on Exadata Grid
Microservices and Multimodel Polyglot Persistence

Storage
Server

Disk

Flash

Storage
Server

Disk

Flash

Storage
Server

Disk

Flash

Storage
Server

Disk

Flash

Storage
Server

Disk

Flash

Storage
Server

Disk

Flash

RAC Node

Exadata Grid

RAC Node RAC Node RAC Node RAC Node RAC Node

Database Container

Service 1

Mongo

JSON
REST

Code
1

Service 2

MySQL

JSON
REST

Code
2

Service 3

Redis

JSON
REST

Code
3

Service 4

Postgr.

JDBC

Code
4

PDB 1 PDB 3 PDB 4PDB 2

Service 5

Neo4J

JSON
REST

Code
5

PDB 5

Spatial Graph OLAPNoSQLRelational XML

M
u

lt
i-

m
o

d
e

l
M

u
lt

i-
te

n
an

t

Ultra-High Availability for Microservices

Converged Database Architecture relies on the
database (CDB) be highly available –
Exadata is great for this

Oracle 19c can also combine PDBs with sharding
Each PDB can be sharded individually across multiple CDBs

Fault isolation and geo-distribution for microservices
Loss of an entire CDB makes only part of a PDB unavailable

Also allows each microservice to scale its PDB
individually

More efficient than scaling entire CDB. Only scale the PDB
needed by the microservice

Scalability, fault isolation and geo-distribution Shard-1 Shard-1Shard-1

Shard-2 Shard-2

Shard-3

Feed-
back

Product

Catalog

Product

Catalog

Product

Catalog

Check
Out

Check
Out

30

Microservices Approach

• In microservices, applications are written as independent services,
usually with their own database

• Each development team can rapidly develop and evolve their
microservice

• However, integration of databases creates massive “macro-level”
complexity

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.31

Convergeable Microservice Databases

• Convergeable Microservice Databases provide independence
without integration complexity

• Microservices are developed as if databases are separate

• Developers focus on application logic rather than database integration

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.32

Convergeable Microservice Databases

• Databases can be flexibly combined or separated

• Combining is enabled by the ability to converge many databases,
data types, and workloads into one container database

Container Database

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.33

Separation of Microservice Databases

• Separation of databases is enabled by using Pluggable
Databases that can be dynamically moved between physical
container databases

34

Container DatabaseContainer Database Container DB

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

µServices and Containerization

Product

catalog

API

Financial

data

API

Recommend

engine

API

µServices

Product

catalog

API

Financial

data

API

Recommend

engine

API

µServices

JSON

µServices and Containerization

Product

catalog

API

Financial

data

API

Recommend

engine

API

µServices

Product

catalog

API

Financial

data

API

Recommend

engine

API

µServices

JSON

µServices and Containerization
µServices

JSON

µServices++

Product

catalog

API

Financial

data

API

Recommend

engine

API

Product

catalog

API

Financial

data

API

Recommend

engine

API

µServices and Containerization
µServices

JSON

Product

catalog

API

Financial

data

API

Recommend

engine

API

µServices++

Product

catalog

API

Financial

data

API

Recommend

engine

API

µServices and Containerization
µServices

Product

catalog

API

Financial

data

API

Recommend

engine

API

JSON

µServices++

Product

catalog

API

Financial

data

API

Recommend

engine

API

µServices and Containerization

Product

catalog

Financial

data

Recommend

engine

Real Application Clusters
Grid Infrastructure

JSON

High Availability

Importance of Messaging

• The term ‘microservice’ may imply that you should look at the
services first

• In fact, it is best to think of the APIs and messages first

• A microservices-based architecture is described by the interaction of
messages. This provides the abstraction that allows each microservice
to be developed and evolved independently

• Provided the messages remain the same, you can replace a service by one or
more other services transparently. This gives you resiliency and scalability

• The messaging system also simplifies the architecture
• Instead of figuring out which microservice talks to which other microservice,

they all use messaging to publish/subscribe to messages/events

Converged Database Architecture

• Oracle Transactional Event Queue is a
event streaming system built-into the
Oracle database

• Supports JMS or Kafka APIs
– Eliminates separate messaging

infrastructure

– Simpler and more secure

• Event Queues supports transactional
messaging - microservice state and
events can be persisted by the same
local transaction (not 2 phase commit)

• Simplify development of fault-tolerant
microservices
• Error recovery logic is typically 90% of the

code. And this code is often poorly tested

Confidential – Gartner SAS Day 7/18/2019

compatible

Multimodel PDBs with Transactional Event Queues

Airline Hotel
Sporting

Events

JSON JSON

JSON

Why this matters

Creating and maintaining robust microservices is now
easy and scalable with
Oracle’s multi-model database with built-in Messaging

➢ Supports different data types
➢ Built-in Kafka-compatible transactional messaging layer
➢ Autonomous management
➢ Cloud scale up/down

Conclusion – Winning the War on
Complexity and Cost

• I.T. has been costly and slow for decades
• Root cause is complexity

• New approaches can finally eliminate the sources of complexity

• Autonomous management, cloud, and machine learning
eliminate the complexity of enterprise products

• A converged product with all needed features
eliminates the complexity of systems integration

44 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Use Oracle Database + Services on OCI

Copyright © 2019 Oracle and/or its affiliates.

Copyright © 2019 Oracle and/or its affiliates.

Thank you

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

